HDAC6 Inhibitors Rescued the Defective Axonal Mitochondrial Movement in Motor Neurons Derived from the Induced Pluripotent Stem Cells of Peripheral Neuropathy Patients with HSPB1 Mutation
نویسندگان
چکیده
The Charcot-Marie-Tooth disease 2F (CMT2F) and distal hereditary motor neuropathy 2B (dHMN2B) are caused by autosomal dominantly inherited mutations of the heat shock 27 kDa protein 1 (HSPB1) gene and there are no specific therapies available yet. Here, we assessed the potential therapeutic effect of HDAC6 inhibitors on peripheral neuropathy with HSPB1 mutation using in vitro model of motor neurons derived from induced pluripotent stem cells (iPSCs) of CMT2F and dHMN2B patients. The absolute velocity of mitochondrial movements and the percentage of moving mitochondria in axons were lower both in CMT2F-motor neurons and in dHMN2B-motor neurons than those in controls, and the severity of the defective mitochondrial movement was different between the two disease models. CMT2F-motor neurons and dHMN2B-motor neurons also showed reduced α-tubulin acetylation compared with controls. The newly developed HDAC6 inhibitors, CHEMICAL X4 and CHEMICAL X9, increased acetylation of α-tubulin and reversed axonal movement defects of mitochondria in CMT2F-motor neurons and dHMN2B-motor neurons. Our results suggest that the neurons derived from patient-specific iPSCs can be used in drug screening including HDAC6 inhibitors targeting peripheral neuropathy.
منابع مشابه
Intermediate filament protein accumulation in motor neurons derived from giant axonal neuropathy iPSCs rescued by restoration of gigaxonin.
Giant axonal neuropathy (GAN) is a progressive neurodegenerative disease caused by autosomal recessive mutations in the GAN gene resulting in a loss of a ubiquitously expressed protein, gigaxonin. Gene replacement therapy is a promising strategy for treatment of the disease; however, the effectiveness and safety of gigaxonin reintroduction have not been tested in human GAN nerve cells. Here we ...
متن کاملTitle : Abnormal mitochondrial transport and morphology as
Spinal muscular atrophy (SMA), characterized by specific degeneration of spinal motor neurons, is caused by mutations in the survival motor neuron 1 (SMN1) gene and subsequent decreased levels of functional SMN. How the deficiency of SMN, a ubiquitously expressed protein, leads to spinal motor neuron-specific degeneration in SMA patients remains unknown. In this study, we examined the role of S...
متن کاملTitle : Abnormal mitochondrial transport and morphology as early pathological
Spinal muscular atrophy (SMA), characterized by specific degeneration of spinal motor neurons, is caused by mutations in the survival motor neuron 1 (SMN1) gene and subsequent decreased levels of functional SMN. How the deficiency of SMN, a ubiquitously expressed protein, leads to spinal motor neuron-specific degeneration in SMA patients remains unknown. In this study, we examined the role of S...
متن کاملStem cell-derived motor neurons from spinal and bulbar muscular atrophy patients
Spinal and bulbar muscular atrophy (SBMA, Kennedy's disease) is a motor neuron disease caused by polyglutamine repeat expansion in the androgen receptor. Although degeneration occurs in the spinal cord and muscle, the exact mechanism is not clear. Induced pluripotent stem cells from spinal and bulbar muscular atrophy patients provide a useful model for understanding the disease mechanism and de...
متن کاملDmm021766 39..49
Spinal muscular atrophy (SMA), characterized by specific degeneration of spinal motor neurons, is caused by mutations in the survival of motor neuron 1, telomeric (SMN1) gene and subsequent decreased levels of functional SMN. How the deficiency of SMN, a ubiquitously expressed protein, leads to spinal motor neuron-specific degeneration in individuals affected by SMA remains unknown. In this stu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016